Category Archives: Uncategorized

Do You need help? NCIM is standing by to answer your questions & address your concerns

If you need help with questions or concerns about stem cell therapies, NCIM’s proprietary Beacon Factor, patient responses to treatment, or just about anything else then grab your phone or keyboard and contact NCIM.

Email NCInfodesk@gmail.com

Phone NCIM at 1-562-916-3410.

You can also shoot NCIM a message using this online form:

Four important points about Nova Cells Institute

cropped-nova-cells-bannerNova Cells Institute has never worked with embryonic or fetal stem cells, and never will. Embryonic and fetal stem cells can produce tumors (These are classified as pluripotent” which means they can form teratomas and other tumors in certain instances such as being injected into the central nervous system). The adult stem cells Nova Cells uses (umbilical cord, Wharton’s Jelly, placenta-derived, and a patient’s own bone marrow) are “multipotent” which limits the body cell types they can become (These stem cells do not form teratomas or such. Some private stem cell clinics in Europe and the US have injected adult stem cells into organs such as kidneys and eyes which caused problems and complications. Nova Cells Institute has never injected stem cells into an organ).
Let’s be very clear about these points and a few others:

(1) Nova Cells was established in 2009. There are other companies that came along later on which use “Nova” in their company title, but these are NOT affiliated in any way with Nova Cells Institute of Mexico (NCIM).

(2) Nova Cells Institute has never used embryonic or fetal stem cells and never will (They can form tumors under certain circumstances).

(3) Nova Cells Institute only uses multipotent adult stem cells derived from umbilical cord blood, Wharton’s Jelly, placental tissue, and a patient’s own bone marrow.

(4) Nova Cells Institute administers stem cells by intravenous drip (On rare occasions Nova Cells affiliated doctors recommend an intrathecal or spinal tap infusion of cells. Everything related to this is spelled out, a process called “informed consent”. Patients who prefer not to do this are given cells by intravenous or IV drip).

Slovakian infant with spina bifida doing things he could never do before

Video April 28, 2017 – Pre-treatment – the day before Nova Cells Institute stem cell & Beacon Factor treatment

Nova Cell's Grace Odgers (left) with Mum & baby Ondrej - April 28, 2017
Baby Ondrej and his Mum – April 28, 2017

Video- post-treatment – one week after Nova Cells Institute stem cell & Beacon Factor treatment

After 2.5 months after the treatment he is constantly making improvements. Now he can roll and also sit by himself.

Thank you for the stem cell treatment!

Love,

Petra

June 25, 2017 (Video)
June 27, 2017 (Video)

♥More photos and videos on the family’s Facebook page:  https://www.facebook.com/ondrejko2016/?fref=nf

Rapid diabetic neuropathy turnaround for one of Nova Cells own MDs!

NCIM

During August one of Nova Cell’s MDs discovered to his own chagrin that his diabetic spawned neuropathy had progressed to the point he could no longer feel his own feet! He then did a single intravenous treatment with primed umbilical cord stem cells and the “Beacon Factor”. Within a week all sensation had returned to his feet and all other neuropathy symptoms were gone.

Quick results, quick report.

Email Updates from Dani Smith’s Mum (Spina Bifida)

NCIMWhat follows below are 2 emails* sent to Nova Cell Institute by the mother of Danielle “Dani” Smith, a little girl with spina bifida who has been the subject of 2 prior blog entries on this website:

Many “giant steps” for Dani

“Dani Smith Walks” – You Tube Video update

Continue reading Email Updates from Dani Smith’s Mum (Spina Bifida)

Wharton’s Jelly Stem Cells: safety & more

stem cells from poweredtemplatesADVANTAGES OF WHARTON’S JELLY STEM CELLS ESPECIALLY MESENCYMALS (Designated as WJ-MSC for convenience below) ESPECIALLY WITH RESPECT TO SAFETY

WJ HAS MORE STEM CELLS THAN EITHER BONE MARROW OR ADIPOSE TISSUE

The quantity of mesenchymal stem cells which can typically be obtained from bone marrow is far less than that Wharton’s Jelly: 0.001 to 0.01% mononuclear cells from BM, with 1 g of adipose tissue yielding ~ 5 × 103 stem cells, and Wharton’s jelly 1 to 5 × 104 cells/cm of umbilical cord. In side-by-side comparison studies of MSC from bone marrow adipose tissue and Wharton’s jelly, WJ-MSCs had the highest proliferative capacity.

WJ STEM CELLS ARE MORE PRIMITIVE THAN OTHER ADULT STEM CELL TYPES YET DO NOT PRODUCE TUMORS AND ACTUALLY HAVE ANTI-TUMOR EFFECTS IN VITRO (Lab dish) AND IN VIVO (In living animals & humans)  

WJ-MSC differ from other adult MSCs with respect to the fact they demonstrate far more primitive characteristics e.g., they express embryonic-like stem cell markers including  pluripotency genes, Oct-4, Nanog, and SOX-2 but at levels well below that of embryonic stem (ESC) cells. Despite this, WJ-MSCs do not form tumors (teratomas). This is attributed to the fact that WJ-MS’s have a lower expression of pluripotency genes than embryonic stem cells (ESCs being very pluripotent and by virtue of this are prone to develop teratomas when injected into animals or humans). When WJ-MSCs were injected in immunocompromised and immunodeficient animals they still failed to form tumors.

Also: WJ-MSCs express low levels of the embryonic stem cell pluripotency markers POUF1, NANOG, SOX2 and LIN28, which also plays a role in the fact they do not produce teratomas. WJ-MSCs also synthesize and express several cytokines including IL12A which is associated with the induction of apoptosis (programmed cell death) which is believed to underlie their ability to lyse (eradicate) tumor cells.

Furthermore, the transcriptome of WJ-MSC and ESC differs substantially in that WJ-MSCs demonstrate high expression levels of several tumor suppressor genes and suppresses tumors both in vitro and in vivo. Moreover, large quantities of tumor growth inhibiting cytokines and growth factors are secreted by WJ-MSCs. Also, WJ-MSC cell lysates as well as the conditioned medium they are cultured in strongly inhibited the growth of breast adenocarcinoma, ovarian carcinoma, osteosarcoma, benign neoplastic keloid cells, bladder tumor, and lymphoma cells  in vitro. When WJ-MSC cell lysates and conditioned medium were injected into mammary carcinoma, osteosarcoma, and pancreatic and lung tumors it inhibited their growth and shrank the tumors in vivo .

WJ-MSCs DO NOT CAUSE IMMUNE REJECTION OR ADVERSE REACTIONS  

WJ-MSCs have also been found to be immunoprivileged which is to say they escape rejection or adverse immune reactions. Part of the reason for this lies in the fact WJ-MSCs have low MHC-I levels and an absence of MHC-II expression. And, though they synthesize low amounts of MHC class I, WJ-MSCs have no immunogenicity. Research indicates that this is due to the fact they  do not express costimulatory molecules such as CD 40, CD80, CD86, and also produce high levels of immune response inhibitors such as indoleamine-2,3-dioxygenase (IDO), prostaglandin E2 (PGE2) and leukocyte antigen G6 (HLA-G6).

NOVA CELLS INSTITUTE HARVESTS & MAKES CLINICAL USE OF STEM CELLS ISOLATED FROM (UMBILICAL CORD) WHARTON’S JELLY CELLS: https://ncimx.wordpress.com/2015/03/15/whartons-jelly-stem-cells/

ADDITIONAL REFERENCES – NIH PubMed results (5-1-2016)

Wharton’s Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model.
Xie ZH, Liu Z, Zhang XR, Yang H, Wei LF, Wang Y, Xu SL, Sun L, Lai C, Bi JZ, Wang XY.
Clin Exp Med. 2016 Feb;16(1):89-98. doi: 10.1007/s10238-015-0375-0. Epub 2015 Jul 19.
PMID: 26188488 [PubMed – in process]
Similar articles

Therapeutic influence of intraperitoneal injection of Wharton’s jelly-derived mesenchymal stem cells on oviduct function and fertility in rats with acute and chronic salpingitis.
Luo HJ, Xiao XM, Zhou J, Wei W.
Genet Mol Res. 2015 Apr 17;14(2):3606-17. doi: 10.4238/2015.April.17.10.
PMID: 25966129 [PubMed – indexed for MEDLINE] Free Article
Similar articles

Effect of human Wharton’s jelly mesenchymal stem cell secretome on proliferation, apoptosis and drug resistance of lung cancer cells.
Hendijani F, Javanmard ShH, Rafiee L, Sadeghi-Aliabadi H.
Res Pharm Sci. 2015 Mar-Apr;10(2):134-42.
PMID: 26487890 [PubMed] Free PMC Article
Similar articles

Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells.
Carlsson PO, Schwarcz E, Korsgren O, Le Blanc K.
Diabetes. 2015 Feb;64(2):587-92. doi: 10.2337/db14-0656. Epub 2014 Sep 9.
PMID: 25204974 [PubMed – indexed for MEDLINE] Free Article
Similar articles

. The Potential of Wharton’s Jelly Derived Mesenchymal Stem Cells in Treating Patients with Cystic Fibrosis.
Boruczkowski D, Gładysz D, Demkow U, Pawelec K.
Adv Exp Med Biol. 2015;833:23-9. doi: 10.1007/5584_2014_17. Review.
PMID: 25248343 [PubMed – indexed for MEDLINE]
Similar articles

Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance.
Kalaszczynska I, Ferdyn K.
Biomed Res Int. 2015;2015:430847. doi: 10.1155/2015/430847. Epub 2015 Mar 15. Review.
PMID: 25861624 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Undifferentiated Wharton’s Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice.
Tsai PJ, Wang HS, Lin GJ, Chou SC, Chu TH, Chuan WT, Lu YJ, Weng ZC, Su CH, Hsieh PS, Sytwu HK, Lin CH, Chen TH, Shyu JF.
Cell Transplant. 2015;24(8):1555-70. doi: 10.3727/096368914X683016. Epub 2014 Jul 15.
PMID: 25198179 [PubMed – in process]
Similar articles

Effects of Wharton’s jelly-derived mesenchymal stem cells on neonatal neutrophils.
Khan I, Zhang L, Mohammed M, Archer FE, Abukharmah J, Yuan Z, Rizvi SS, Melek MG, Rabson AB, Shi Y, Weinberger B, Vetrano AM.
J Inflamm Res. 2014 Dec 31;8:1-8. doi: 10.2147/JIR.S71987. eCollection 2015.
PMID: 25678809 [PubMed] Free PMC Article
Similar articles

A comparison of Wharton’s jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy.
El-Demerdash RF, Hammad LN, Kamal MM, El Mesallamy HO.
Regen Med. 2015;10(7):841-55. doi: 10.2217/rme.15.49. Epub 2015 Nov 6.
PMID: 26541176 [PubMed – in process]
Similar articles

. Comparisons of Differentiation Potential in Human Mesenchymal Stem Cells from Wharton’s Jelly, Bone Marrow, and Pancreatic Tissues.
Kao SY, Shyu JF, Wang HS, Lin CH, Su CH, Chen TH, Weng ZC, Tsai PJ.
Stem Cells Int. 2015;2015:306158. doi: 10.1155/2015/306158. Epub 2015 Jul 29.
PMID: 26294917 [PubMed] Free PMC Article
Similar articles

. Roles of the co-culture of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells with rat pancreatic cells in the treatment of rats with diabetes mellitus.
Wang G, Li Y, Wang Y, Dong Y, Wang FS, Ding Y, Kang Y, Xu X.
Exp Ther Med. 2014 Nov;8(5):1389-1396. Epub 2014 Sep 22.
PMID: 25289028 [PubMed] Free PMC Article
Similar articles

Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation.
Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y.
Int J Mol Med. 2014 Sep;34(3):695-704. doi: 10.3892/ijmm.2014.1821. Epub 2014 Jun 25.
PMID: 24970492 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Safety and feasibility of umbilical cord mesenchymal stem cells in treatment-refractory systemic lupus erythematosus nephritis: time for a double-blind placebo-controlled trial to determine efficacy.
Woodworth TG, Furst DE.
Arthritis Res Ther. 2014 Jul 30;16(4):113. doi: 10.1186/ar4677.
PMID: 25166210 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus.
Liu X, Zheng P, Wang X, Dai G, Cheng H, Zhang Z, Hua R, Niu X, Shi J, An Y.
Stem Cell Res Ther. 2014 Apr 23;5(2):57. doi: 10.1186/scrt446.
PMID: 24759263 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly.
Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R.
Stem Cell Res Ther. 2014 Apr 16;5(2):53. doi: 10.1186/scrt442.
PMID: 24739658 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Therapeutic effect of transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis.
Mikaeili Agah E, Parivar K, Joghataei MT.
Mol Neurobiol. 2014 Apr;49(2):625-32. doi: 10.1007/s12035-013-8543-2. Epub 2013 Aug 28.
PMID: 23982748 [PubMed – indexed for MEDLINE]
Similar articles

Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1.
Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G, Miao S, Liu G, Lu M, Zhu Y.
Stem Cell Res Ther. 2014 Mar 19;5(2):40. doi: 10.1186/scrt428.
PMID: 24646750 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats.
Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, Gao H, Zhao W, Yan S, Wang Y.
Endocrine. 2014 Mar;45(2):279-87. doi: 10.1007/s12020-013-9984-0. Epub 2013 May 18.
PMID: 23686639 [PubMed – indexed for MEDLINE]
Similar articles

Effect of human Wharton’s jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts.
Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Jeschke MG.
Stem Cells Transl Med. 2014 Mar;3(3):299-307. doi: 10.5966/sctm.2013-0120. Epub 2014 Jan 16.
PMID: 24436441 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.
Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG.
Stem Cell Res Ther. 2014 Feb 24;5(1):28. doi: 10.1186/scrt417.
PMID: 24564987 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

. Characterization of hepatic markers in human Wharton’s Jelly-derived mesenchymal stem cells.
Buyl K, De Kock J, Najar M, Lagneaux L, Branson S, Rogiers V, Vanhaecke T.
Toxicol In Vitro. 2014 Feb;28(1):113-9. doi: 10.1016/j.tiv.2013.06.014. Epub 2013 Jun 29.
PMID: 23820183 [PubMed – indexed for MEDLINE]
Similar articles

Human Wharton’s Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth.
Sabapathy V, Sundaram B, V M S, Mankuzhy P, Kumar S.
PLoS One. 2014 Apr 15;9(4):e93726. doi: 10.1371/journal.pone.0093726. eCollection 2014.
PMID: 24736473 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Stem cells from umbilical cord Wharton’s jelly from preterm birth have neuroglial differentiation potential.
Messerli M, Wagner A, Sager R, Mueller M, Baumann M, Surbek DV, Schoeberlein A.
Reprod Sci. 2013 Dec;20(12):1455-64. doi: 10.1177/1933719113488443. Epub 2013 May 13.
PMID: 23670950 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction.
Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y, Zhang HY.
Coron Artery Dis. 2013 Nov;24(7):549-58. doi: 10.1097/MCA.0b013e3283640f00.
PMID: 23892469 [PubMed – indexed for MEDLINE]
Similar articles

Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly.
Zhou CH, Li ML, Qin AL, Lv SX, Wen-Tang, Zhu XY, Li LY, Dong Y, Hu CY, Hu DM, Wang SF.
Pancreas. 2013 Nov;42(8):1291-302. doi: 10.1097/MPA.0b013e318296924e.
PMID: 24152954 [PubMed – indexed for MEDLINE]
Similar articles

Human Wharton’s jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells.
Du T, Zou X, Cheng J, Wu S, Zhong L, Ju G, Zhu J, Liu G, Zhu Y, Xia S.
Stem Cell Res Ther. 2013 Jun 4;4(3):59. doi: 10.1186/scrt215.
PMID: 23734757 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow.
Balasubramanian S, Thej C, Venugopal P, Priya N, Zakaria Z, Sundarraj S, Majumdar AS.
Cell Biol Int. 2013 May;37(5):507-15. doi: 10.1002/cbin.10056. Epub 2013 Feb 18.
PMID: 23418097 [PubMed – indexed for MEDLINE]
Similar articles

Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton’s jelly and umbilical cord.
Manochantr S, U-pratya Y, Kheolamai P, Rojphisan S, Chayosumrit M, Tantrawatpan C, Supokawej A, Issaragrisil S.
Intern Med J. 2013 Apr;43(4):430-9. doi: 10.1111/imj.12044.
PMID: 23176558 [PubMed – indexed for MEDLINE]
Similar articles

. Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications.
Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C.
Curr Stem Cell Res Ther. 2013 Mar;8(2):144-55. Review.
PMID: 23279098 [PubMed – indexed for MEDLINE]
Similar articles

Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels.
Choi M, Lee HS, Naidansaren P, Kim HK, O E, Cha JH, Ahn HY, Yang PI, Shin JC, Joe YA.
Int J Biochem Cell Biol. 2013 Mar;45(3):560-70. doi: 10.1016/j.biocel.2012.12.001. Epub 2012 Dec 12.
PMID: 23246593 [PubMed – indexed for MEDLINE]
Similar articles

Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly.
Trivanović D, Kocić J, Mojsilović S, Krstić A, Ilić V, Djordjević IO, Santibanez JF, Jovcić G, Terzić M, Bugarski D.
Srp Arh Celok Lek. 2013 Mar-Apr;141(3-4):178-86.
PMID: 23745340 [PubMed – indexed for MEDLINE] Free Article
Similar articles

Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report.
López Y, Lutjemeier B, Seshareddy K, Trevino EM, Hageman KS, Musch TI, Borgarelli M, Weiss ML.
Curr Stem Cell Res Ther. 2013 Jan;8(1):46-59.
PMID: 23270633 [PubMed – indexed for MEDLINE]
Similar articles

Perspectives of employing mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for peripheral nerve repair.
Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC.
Int Rev Neurobiol. 2013;108:79-120. doi: 10.1016/B978-0-12-410499-0.00004-6. Review.
PMID: 24083432 [PubMed – indexed for MEDLINE]
Similar articles

Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis.
Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM.
PLoS One. 2013 Aug 22;8(8):e72604. doi: 10.1371/journal.pone.0072604. eCollection 2013.
PMID: 23991127 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs.
Ryu HH, Kang BJ, Park SS, Kim Y, Sung GJ, Woo HM, Kim WH, Kweon OK.
J Vet Med Sci. 2012 Dec;74(12):1617-30. Epub 2012 Aug 9.
PMID: 22878503 [PubMed – indexed for MEDLINE] Free Article
Similar articles

Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction.
Zhang J, Chen GH, Wang YW, Zhao J, Duan HF, Liao LM, Zhang XZ, Chen YD, Chen H.
Chin Med J (Engl). 2012 Oct;125(19):3472-8.
PMID: 23044308 [PubMed – indexed for MEDLINE] Free Article
Similar articles

Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells.
Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q.
Cell Immunol. 2012 Jul-Aug;278(1-2):35-44. doi: 10.1016/j.cellimm.2012.06.010. Epub 2012 Jul 16.
PMID: 23121974 [PubMed – indexed for MEDLINE]
Similar articles

Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells.
Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, Bongso A, Chui-Yee F.
J Cell Biochem. 2012 Jun;113(6):1886-95. doi: 10.1002/jcb.24057.
PMID: 22234854 [PubMed – indexed for MEDLINE]
Similar articles

Comparison of human amniotic fluid-derived and umbilical cord Wharton’s Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.
Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y.
J Geriatr Cardiol. 2012 Jun;9(2):166-71. doi: 10.3724/SP.J.1263.2011.12091.
PMID: 22916064 [PubMed] Free PMC Article
Similar articles

Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients.
Ma L, Zhou Z, Zhang D, Yang S, Wang J, Xue F, Yang Y, Yang R.
Thromb Haemost. 2012 May;107(5):937-50. doi: 10.1160/TH11-08-0596. Epub 2012 Mar 8.
PMID: 22398715 [PubMed – indexed for MEDLINE]
Similar articles

Comparison of chemokine and receptor gene expression between Wharton’s jelly and bone marrow-derived mesenchymal stromal cells.
Balasubramanian S, Venugopal P, Sundarraj S, Zakaria Z, Majumdar AS, Ta M.
Cytotherapy. 2012 Jan;14(1):26-33. doi: 10.3109/14653249.2011.605119. Epub 2011 Nov 18.
PMID: 22091833 [PubMed – indexed for MEDLINE]
Similar articles

Wharton’s Jelly stem cells: future clinical applications.
Taghizadeh RR, Cetrulo KJ, Cetrulo CL.
Placenta. 2011 Oct;32 Suppl 4:S311-5. doi: 10.1016/j.placenta.2011.06.010. Epub 2011 Jul 6. Review.
PMID: 21733573 [PubMed – indexed for MEDLINE]
Similar articles

Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells.
Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG.
Cytotherapy. 2011 Sep;13(8):918-32. doi: 10.3109/14653249.2011.579957. Epub 2011 Jun 22.
PMID: 21696238 [PubMed – indexed for MEDLINE]
Similar articles

Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes.
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G.
Stem Cell Rev. 2011 Jun;7(2):342-63. doi: 10.1007/s12015-010-9196-4. Review.
PMID: 20972649 [PubMed – indexed for MEDLINE]
Similar articles

Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes.
Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, Guan F.
Cell Immunol. 2011;272(1):33-8. doi: 10.1016/j.cellimm.2011.09.010. Epub 2011 Sep 29.
PMID: 22004796 [PubMed – indexed for MEDLINE] Free PMC Article
Similar articles

Improvements coming out of the gate for Evie Morgan (3 year old little girl with Spina bifida)

Three year old Evie Morgan has spina bifida and a Facebook page devoted to her journey to betterment at https://www.facebook.com/evieswarriors/. She was treated in Mexico by Nova Cells Institute doctors during April (2016) and soon her Mum, Heather, was emailing NCIM a series of positive reports and video clips.  Heather also made posts to the aforementioned Facebook page — three of which follow further down below.

Evie Morgan - April 2016
Evie in Mexico getting IV infusion

On 4-27-16 Heather Morgan sent this email message to NCIM:

We felt very comfortable in the hospital. The room was very clean and had a private bathroom and sink. The pediatrician, Dr. Sanchez, was amazing and Evie loved her so much. Dr. Sanchez spoke great English and we had no trouble understanding her at all. The nurses were very attentive to whatever it was that Evie needed and Grace was always right there to translate for us if they had questions or we wanted to say something. The procedure was quick and painless. Within 5 minutes of receiving the treatment Evie began moving her toes. In the week and a half since treatment Evie is still able to move her toes on command (prior to treatment Evie only had very little involuntary movement of her toes), she is urinating more on her own and has very increased balance. She is now beginning to walk much longer distances with her canes (before she had a walker). At her next urology appointment we are going to be able to start discussing next steps in seeing how her bladder can fully function without medication. We are very pleased with the results we have seen thus far and can’t wait to see what else Evie is going to do!

 Evie’s Warriors – Posted on April 22, 2016 (Friday)
 

This video was taken 2 days after stem cells. Evie is now able to move her toes on command! Before it was completely involuntary movement. Pardon her sassiness at the beginning 😂 Evie also has incredibly improved balance and is able to walk much longer distances with her canes! ‪#‎evieswarriors‬

EVIE MORGAN - 2 days after SCT treatment - April 2016
Go to Evie’s Warriors Facebook page to watch

 

Evie’s Warriors

April 16 at 5:46pm ·

Evie is showing improvements in her bladder function and abilities since yesterday. We aren’t sure if this is going to be a consistent thing but we are definitely watching now. This is nuts.

Sorry for lack of updates. Everything went perfectly and the treatment is now complete. Within minutes Evie was flexing her right ankle when asked and wiggling all 5 toes. Some of the movement is involuntary right now as the cells are being repaired. We will continue to see results for a few months. Thank you all for supporting our girl! ‪#‎evieswarriors‬

Evie's Warriors's photo.

Video: Little boy with spina bifida is now moving the toes on both his feet

Rikky Foresman is a little boy with spina bifida who had his first stem cell treatment with Nova Cells Institute during early 2014. Last month (March 2016) he underwent another treatment with laboratory primed umbilical cord stem cells and NCIM’s unique & proprietary “Beacon Factor”. It has now been less than 3 weeks since Rikky’s treatment, and on March 29 (2016) his father posted a video of the boy moving the toes on both his feet on the family’s “Blazin’ for Rikky” Facebook page at https://www.facebook.com/BlazinforRikky/?fref=nf

It should also be noted that Rikky began feeling temperature changes in his legs and feet the very next day following his treatment (while at the beach).

 FORESMAN video - late March 2016

HD
This link is to past stories on Rikky that have been posted on this website: